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Dynamical properties of the normal phase of betaine
calcium chloride dihydrate. II. A semimicroscopic model

J Hlinka†, M Quilichini†, R Currat‡ and J F Legrand‡
† Laboratoire Ĺeon Brillouin, Centre d’Etudes de Saclay, Gif-sur-Yvette, France
‡ Institute Laue-Langevin, 38042 Grenoble, France

Received 22 April 1996

Abstract. A ten-parameter quasi-harmonic semimicroscopic model for the low-frequency
lattice dynamics of betaine calcium chloride dihydrate is presented. The choice of the
relevant variables and interaction terms of the model potential is mainly based on the known
crystallographic data, while the values of the quasi-harmonic force constant parameters are
adjusted to our recent inelastic neutron scattering data. The parameter with the largest
temperature derivative is determined and the origin of its temperature renormalization is
discussed.

1. Introduction

It is now admitted that the general origin of incommensurability in insulators consists in the
competition of interactions or in the competition of periodicities which are favoured by these
interactions. To a large extent this understanding is due to the introduction and exhaustive
investigation of simple models such as the Frenkel–Kontorova [1] (see also [2, 3]), ANNNI
[4, 5] and DIFFOUR [6] models. All these models account not only for the existence
of the incommensurate phases but also for the existence of a sequence of commensurate
phases, as found experimentally in the phase diagram of betaine calcium chloride dihydrate
(BCCD).

Tentrup and Siems [7] proposed to map the experimental P–T phase diagram of BCCD
onto the well established phase diagram of the ANNNI model. Their main assumption
was that the unknown physical quantity, which in this mapping is identified with the ratio
J1/J2 of first- to second-neighbour interactions, depends on temperature and pressure only
through the average lattice constant. The success of their approach proves that the general
hypothesis that such a mapping should exist is correct. On the other hand, because of the
lack of explicit microscopic interpretation for the ANNNI model pseudo-spin variables, and
also because there is no provision for pseudo-spin dynamics in this model, the possibility of
relating the effective values of theJ1/J2 ratio to other properties of BCCD is quite limited.

The DIFFOUR model is conceptually much closer to usual lattice dynamical models,
because it is based on the interaction potential expressed in terms of continuous positional
variables of particles forming a discrete periodic array. Chen and Walker [8] have proposed
a model of this type for BCCD. They propose to associate each atom in the unit cell with
one of the twoσc planes atc = 1

4 and c = 3
4 and to ascribe two local variables to each

so-defined ‘layer’. Moreover, in order to relate the possible equilibrium configurations
of their model to the known space group symmetry of the various BCCD phases, they
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attributed appropriate symmetry properties to their variables. For each layer, one variable
is symmetric and one antisymmetric with respect to theσc plane associated with the layer.
Furthermore, all variables are antisymmetric with respect to theσb plane in order to allow
the construction of three-dimensional displacement waves having the symmetry of the order
parameter, as proposed by Ao and Schaack [9] and established by Perez-Mato [10].

Further progress was achieved via a closer identification of the atomic displacements
involved in the modulation, and their relation to the observed phonon modes. Two kinds
of characteristic displacement were identified.

First, the structure refinement of the normal phase performed by Brillet al [11] revealed
large anisotropic librations of the betaine molecules and also of the ‘Ca complexes’, each
around its own particular axis in theσb plane. Dvǒrák [12] suggested that these large
librations could be associated with the lowest-frequency Raman- [9] and infrared-active
[13–15] modes. He proposed to take these librations as critical degrees of freedom relevant
to the phase transition and suggested the construction of a DIFFOUR-type model with
variables describing correlated librations of the betaine and Ca octahedra.

The importance of including the translational degrees of freedom was recognized after
the inelastic neutron scattering work of Curratet al [16]. Their results showed that the
transition to the incommensurate phase is accompanied by phonon softening and that the
soft mode belongs to a mixed acoustic–optic branch. This implies that there are translational
contributions to the soft-mode eigenvector. Furthermore, the mixed translational–rotational
character of the static displacement modulation pattern was evidenced by the structure
refinement of Zũniga et al [17].

The coupling between acoustic and optic branches was initially proposed as a possible
origin for an incommensurate instability by Axeet al [18] in 1970. Since then this type of
mechanism was evidenced in two incommensurate insulators: quartz and K2SeO4.

The anomalous character of the observed phonon dispersion branches allowed one in
some cases to construct quantitative phenomenological mode-coupling models, in which the
phonon eigenmodes are obtained via a diagonalization of a mode-mixing matrix, written in
terms of a conveniently chosen set of ‘bare’ modes. The numerical values of the parameters
entering the mode-mixing matrix are determined by fitting to the experimental phonon
dispersions.

The work of Axeet al [18] on KTaO3 and of Dolinoet al [19, 20] on quartz illustrate
this approach. For these two cases the anomaly was located in the very vicinity of the zone
centre. In this case the development of the bare branches (and of their mutual interaction)
in powers of the phonon wavevectorq can be used as a convenient way to parametrize the
dynamical matrix.

This approach clearly cannot be used when the dispersion anomaly is located deep
inside the Brillouin zone such as for K2SeO4. Instead, the development in Fourier series
must be used. This is justified for most insulators, because the limitation of the Fourier
development of the bare mode dispersion to the first few terms corresponds physically to
the approximation of short-range interactions. A simple mode-mixing model of this type
was recently proposed by Pérez-Mato [25] for K2SeO4.

Still, it should be stressed that in both of the above-mentioned models (quartz and
K2SeO4) the assumptions that go beyond a simplefirst-neighbour acoustic–optic interaction
approximation are crucial. In the K2SeO4 case, the minimum on the soft-mode branch
appeared only after including a term describing the interaction between the ‘optic’ and
‘acoustic’ degrees of freedom associated withsecond-neighboursites. Similarly, the model
for quartz would not account for the incommensurate instability if the fourth-order termhq4

in the parametrization of the soft branch were omitted. It will be shown in this paper that the
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coupling to a second optic branch is most likely to be at the origin of the incommensurate
character of the instability in BCCD.

Thus phenomenological mode-coupling models are useful not only because they enable
one to account for the anomalous variation in the frequencies, structure factors and damping
constants of the mixed modes as a function ofq, but also because they may provide a closer
understanding of the origin of incommensurability in these crystals.

In the preceding paper, part I [21], we presented the results of a detailed inelastic neutron
study of the dispersion curves in deuterated BCCD. These measurements were performed
in order to set up a quantitative mode-coupling model applicable to BCCD. However, we
have found that, owing to the existence of two closely spaced optic branches, a purely
phenomenologicalapproach does not allow an unambiguous determination of the mode
mixing matrix. Therefore, we developed instead a semimicroscopic model in which the
parametrization of the mode-mixing matrix is directly derived from arguments based on
structural and dynamical data.

In the meantime, Kappler and Walker [22] modified their original model in order to reach
agreement with the measured dispersion curves [16], by including the acoustic branch. They
have found that a rich sequence of modulated phases, similar to that observed experimentally,
can be obtained equally well in the modified model as in their previous model which do not
include coupling to the acoustic branch. Obviously, the model that we propose here is in
several respects similar to that of Kappler and Walker. However, the work in [16] is centred
on the determination of the phase diagram, while in this contribution we are concerned with
the definition and the physical interpretation of the model itself. Such an interpretation is
necessary in order to allow a direct comparison of the model with as many experimental
results as possible.

In section 2.2 below, we define a set of convenient local variables and in section 2.3
we describe explicitly the approximations which are used to obtain the general form of the
quasi-harmonic potential. In section 3 the symmetry-adapted bare modes are introduced
and the properties of the corresponding mode-mixing matrix are analysed. The possibility
of adjusting the values of the ten model parameters on the experimental phonon dispersion
curves is discussed in section 4. Then the model is used to study the temperature dependence
of the phonon dispersions and the possible role of various anharmonic terms is considered.
Finally, section 5 is devoted to the discussion of the results and to possible improvements
to the present model.

2. Definition of the model

2.1. General assumptions

For crystals composed of well defined rigid entities, the eigenvectors of the lowest branches
represent essentially rotations and translations of each entity as a whole. The dispersion
of these branches may then be calculated from rigid-body models, in which the internal
degrees of freedom are not taken into account. On the basis of the available structural data,
we expect that for BCCD the betaine molecules and to some extent also the Ca complexes
CaCl2 · 2H2O could be treated as such rigid units.

Another simplification of the problem can be achieved, if phonon dispersions are
calculated only along directions or planes of special symmetry. In this case the dynamical
matrix may be converted into a block diagonal form, where each block corresponds to a
different symmetry representation and can be diagonalized separately. In BCCD the soft
phonon belongs to the33 representation, which has eigenvectors antisymmetric with respect
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to the mirror planeσb. Therefore only those degrees of freedom that are antisymmetric with
respect toσb are introduced here. Consequently, only the phonons propagating in thea∗–c∗

plane can be calculated, as for a general propagation direction out of this plane the phonon
eigenvectors contain bothσb-symmetric andσb-antisymmetric contributions.

The restriction to theσb-antisymmetric rigid-body degrees of freedom leaves us with
three degrees of freedom (translationTy and rotationsRx and Rz) per rigid-body unit. In
the following, still more drastic simplifications will be made, as we shall retain only one
translational and one rotational degree of freedom per whole formula unit of BCCD.

Such an approach will enable us to derive a simple lattice dynamical (quasi-harmonic)
model which we shall later use as a basis for developing a DIFFOUR-type anharmonic
model [23].

2.2. Relevant variables

There are four formula units per unit cell of BCCD. Taking the basic formula unit as
defined by Brill et al [11], the other three units may be deduced by symmetry operations.
Each formula unit has a mirror symmetry element, coinciding with aσb plane of the Pnma
structure. The basic formula unit and the unit related byσc can be associated with theσb

plane aty = 1
4 and the other two formula units with theσb plane aty = 3

4 (figure 1).

(a) (b)

Figure 1. There are four formula units per unit cell of BCCD, (a) two related by theσb plane
at y = 1

4 and (b) the other two by theσb plane aty = 3
4 . Labels 1–4 are defined in the text

(see section 2.2).

In the following the four formula units of the primitive unit cell, deduced byE, σa, C2y

andσc, from the basic unit, will be indexed as 1, 2, 3 and 4, respectively.
The TLS analysis of the thermal Debye–Waller factors [11] shows that the characteristic

degrees of freedom of the soft-phonon branch are the rotations of both entities (Ca complex
and betaine molecule), each around its own preferential axis lying in the corresponding
(σb) mirror plane. The structure analysis of the modulated phases [17, 36] confirmed that
essentially the same rotational distortions appear in the frozen modulation pattern. Let us
refer to the rotations of these entities around their preferential axes as the ‘easy rotations’.
All the other rotational degrees of freedom will be neglected.

Further, from the geometry of the atomic displacements involved in the easy rotations
(figure 2), one may expect that the coupling between the easy rotation of each betaine
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Figure 2. The ‘column’. Top: the betaine molecules and Ca complexes (CaCl2·2H2O) belonging
to the same ‘column’ A00 viewed along the axis of rotation. The thermal ellipsoids have their
longest axes oriented tangentially to the axis of ‘easy rotation’. Theb axis is vertical. Bottom:
schematic representation of the mutual correlations of the easy rotations inside the column. The
structure refinement of the modulated phase [17] shows that the static displacements of the
betaines and Ca complexes inside the same column are oriented in the same sense, as if linked
by connecting rods.

molecule with its nearest-neighbour Ca complexes along theb direction is larger than the
couplings with its ‘transverse’ neighbours (lying in the sameσb mirror plane). As we are
interested here mainly in the dispersion of the low-energy transverse phonon branches, we
shall consider that this ‘longitudinal’ coupling of easy rotations is infinitely strong. Then
there are perfect correlations between each betaine and its nearest ‘longitudinal’ neighbour
Ca complex. In this case the easy rotation of each betaine 1 entails simultaneously a
corresponding rotation of the two nearest Ca complexes 2′. The same holds for betaine 2 (3
and 4, respectively) and the nearest Ca complexes 4′ (1′ and 3′, respectively). Consequently,
there remain only four independent rotational degrees of freedom in the unit cell, and thus
only two (extended) phonon branches related to these correlated easy rotations. Obviously,
following the original proposal of Dvǒrák [12] discussed above, these can be attributed to
the two low-energy transverse optic branches observed in the experiment. Let us stress
that these correlations associate entities belonging todifferent symmetrical formula units,
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lying in different mirror planesσb. In fact, owing to the existence of these symmetry
planes the correlated entities form infinite strands spreading along theb direction. In the
following the sequences of strongly correlated betaine molecules and Ca complexes will
be called ‘columns’ (figure 2 and figure 3(a)). In figure 3(b) we represent each column
by the projection of its axis of mass onto thea–c plane. It is convenient to label columns
containing betaines 1 and Ca complexes 2′ by the letter A, and similarly columns containing
betaines 2 (3 and 4, respectively) and Ca complexes 4′ (1′ and 3′, respectively) by the letter
C (B and D, respectively). Different columns in each family are distinguished by the other
two indicesh and l, specifying thex and z coordinates of the unit cell to which a given
column belongs.

(a) (b)

Figure 3. Schematic representation of the crystal structure, projected onto the (a–c) plane. (a)
Betaine molecules 1, 2, 3 and 4 and Ca complexes 1′, 2′, 3′ and 4′ are represented by the polar
diagrams of their thermal librations. Units 1, 1′, 4 and 4′ (full curve) are in the mirror planeσb

at y = 1
4 , while the units 2, 2′, 3 and 3′ (broken curve) belong to the mirror plane aty = 3

4 .
Labels 1–4 are defined in the text (see section 2.2 and figure 2). (b) The ‘columns’. The
betaines and neighbouring inorganic Ca complexes are assembled in ‘columns’. As explained
in the text, the ‘easy displacements’ of the entities belonging to the same column are strongly
correlated. Consequently, they are described by only one collective variable for eachkind of
easy displacement, i.e. by one translational and one rotational variable. The symbols illustrate
the notation adopted in sections 2.2 and 2.3. The circle centred on the axis of column A00

represents the ‘interaction radius’. Direct coupling between variables defined on the column
A00 and those defined on the columns outside this cylinder are neglected.

To each column we ascribe one ‘column variable’ (αh,l , βh,l , γh,l andδh,l for the columns
Ah,l , Bh,l , Ch,l and Dh,l , respectively). Each variable is understood as a mass-reduced
amplitude of correlated easy rotations along the corresponding column and is considered as
positive when the resulting dipole moment of the column is oriented in the positive sense
of the b axis.

To describe the acoustic modes, the translational degrees of freedom are necessary.
Following similar arguments to those given for the easy rotations, we introduce translational
variablesah,l , bh,l , ch,l and dh,l describing mass-reduced translational amplitudes of the
corresponding column as a whole in theb direction.

Because of the symmetry of the crystal, the variables introduced are mutually related by
the symmetry operations of the Pnma space group, as seen in table 1 for the rotational
variables (αh,l , βh,l , γh,l and δh,l). Similar relations are obtained for the translational
variables (ah,l , bh,l , ch,l anddh,l).
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Table 1. Symmetry properties for the ‘rotational’ variables.

Rotational variables

E αh,l βh,l γh,l δh,l ξn ηn

σa(
1
2

1
2

1
2) β−h,l+1 α−h,l δ−h−1,l γ−h−1,l+1 ξn+1 ηn+1

σc(
1
201

2) δh,−l−1 γh,−l βh+1,−l αh+1,−l−1 η−n ξ−n

σb(01
20) −αh,l −βh,l −γh,l −δh,l −ξn −ηn

For the purpose of the analysis of the phonon dispersion along the3 direction (q ‖ c∗)
it is sufficient to introduce the displacement fields that depends on the indexl only. In
this case it is convenient to introduce new variablesξn and ηn for rotations andxn and
yn for translations. They describe correlated displacements of whole layers of columns,
perpendicular to the directionc.

From the symmetry relations, one sees that the indexn takes the values 2l (for B and C)
or 2l+1 (for A and D). Namely, the glide planen (σa) operates onxn, yn, ξn andηn formally
as translation operator with the halved periodc/2. Therefore, the phonon eigenvectors may
be defined only in one half of the unit cell, if the range of independent phonon wavevectors
q ‖ c∗ is simultaneously extended twice, as if the true periodicity of the crystal werec/2.
We shall see in the next paragraph that such a definition enables one to write the potential
function in a very compact form.

Finally, for the analysis of the dispersion along the direction6(q ‖ a∗) it is possible to
introduce similar variables̃xm, ỹm, ξ̃m and η̃m that play the same role as those introduced
earlier forq ‖ c∗.

2.3. Relevant interaction terms

Eight low-frequency dispersion curves in any directionq ⊥ b∗ (namely four extended
33–32 and four extended64–62 branches) may be calculated from the quasi-harmonic
part of the free energy expressed as a function of the variables introduced above. Such a
free energy may be obtained from the total crystal potential after averaging out all non-
relevant coordinates. The quasi-harmonic force constants corresponding to the coupling
between two variables defined on any chosen couple of columns would then be given by
the harmonic and anharmonic interactions between atoms belonging to two columns. We
propose here to retain only some of the near-neighbour ‘intercolumn’ force constants as
fitting parameters and to neglect totally the interaction between more distant columns.

For the translational variables we suggest considering only the coupling of each variable
with those of the four neighbouring columns connected by deuterium bonds. For example,
the variablea00 describing the translation of column A00 is then coupled to the variables
d00, d−1,0, b00 andb01. The corresponding contribution to the quasi-harmonic potential can
be written in the form

1Ft = 1
2t0a

2
00 + tad00a00 + taa00d−1,0 + tca00b00 + tca00b01

where ta stands for the coupling constant for the pair of columns linked by deuterium
bonds parallel toa (those related byσc) and tc stands for the coupling constant for the
pair of columns linked by deuterium bonds parallel to theb + c andb − c directions (those
related byσa). The ‘self’-coupling constanttc is determined by the condition of translational
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invariance:

t0 = −2ta − 2tc

which ensures that an equal translation of all columns does not change the total energy.
For the coupling between rotational variables we suggest adding also the coupling

between the two nearest-neighbour columns related by the C2b operation. First, because it
is the rotation of the betaine molecule that dominates in the rotational degree of freedom and
the betaine molecules of the two nearest-neighbour columns related by C2b are quite close
to each other. Secondly, the rotational degrees of freedom create non-zero total column
dipole momentspy which certainly add important dipole–dipole Coulomb contributions to
the rotation–rotation coupling constants. As such contributions depend on the intercolumn
distance, a coherent approximation should account for all columns up to a certain distance.
Including the interactions between the nearest-neighbour columns related by C2b, σc andσa

(r1, ra and rc) corresponds to defining an ‘interaction cylinder’ with a diameter of about
15 Å (1.5 times the unit-cell parameter). The quasi-harmonic potential containing terms
which couple the easy rotations inside column A00 with those of the neighbouring columns
then reads

1Fr = 1
2r0α

2
00 + r1γ00α00 + raδ00α00 + raα00δ−1,0 + rcα00β00 + rcα00β01.

The self-coupling constantr0 is here an independent parameter specifying the quasi-
harmonic force constant describing the return torque acting on the easy rotations of a given
column when displacements of all neighbouring columns are held fixed. Let us remark that
from the microscopic point of view this coupling constant depends on both the intracolumn
and the intercolumn atomic interactions.

Finally for the coupling between the translational and rotational variables we retain
only the terms corresponding to the nearest-neighbour columns related byσc andσa. The
variablesa00 andα00 appear in the following translation–rotation coupling terms:

1Fs = s0α00a00 + s ′
aα00d00 + s ′′

a α00d−1,0 + s ′′
c α00b00 + s ′

cα00b01 + s ′′
a a00δ00 + s ′

aa00δ−1,0

+s ′
ca00β00 + s ′′

c a00β01.

Note that the coupling constants for the interaction of column A with the two nearest-
neighbour B columns (or D columns, respectively) are distinguished here as there is no
symmetry relation between the translational and rotational displacements. Moreover, it
might be expected that they are quite different or even of opposite signs, as the atoms on
the different sides of the rotation axis of the rotating unit are displaced in opposite senses.
The condition for the translational invariance provides

s0 = −s ′
a − s ′

c − s ′′
a − s ′′

c .

The total quasi-harmonic potential in the present model is given by the sum of three types
of coupling terms:

F = Ft + Fs + Fr

Ft = Nk

∑
h,l

{ 1
2t0(a

2
hl + b2

hl + c2
hl + d2

hl) + · · ·}

Fs = Nk

∑
h,l

{s0(ahlαhl + bhlβhl + chlγhl + dhlδhl) + · · ·}

Fr = Nk

∑
h,l

{ 1
2r0(α

2
hl + β2

hl + γ 2
hl + δ2

hl) + · · ·}

Nk =
∑

k

1.
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As all columns are symmetry related, each column has equivalent surroundings and there
are only ten independent parameters (ta, tc, s ′

a, s ′
c, s ′′

a , s ′′
c , ra, rc, r0 andr1) in the potential.

For the displacement fields that do not depend on the indexh, this potential can be expressed
in the variablesxn, yn, ξn andηn:

F = Ft + Fs + Fr

Ft = Nh,k

∑
n

{ 1
2t0(x

2
n + y2

n) + 2taxnyn + tc(xnxn+1 + ynyn+1)}

Fs = Nh,k

∑
n

{s0(ξnxn + ηnyn) + (s ′
a + s ′′

a )(ξnyn + ηnxn) + s ′
c(xnξn+1 + ηnyn+1)

+s ′′
c (xn+1ξn + ηn+1yn)}

Fs = Nh,k

∑
n

{ 1
2r0(ξ

2
n + η2

n) + r1ξn+1ηn + 2raξnηn + rc(ξnξn+1 + ηnηn+1)}

Nh,k =
∑
h,k

1.

(2.1)

3. Lattice modes propagating along thec∗ and a∗ directions

Phonon frequencies corresponding to the ‘easy displacements’, as defined above, can be
calculated as eigenvalues of the Fourier transformed force constant matrix of the proposed
model potential. The resulting matrix may be viewed as a truncated submatrix of the full
dynamical matrix of the crystal. However, in order to appreciate the role of the different
coupling terms on the resulting phonon dispersions, it is useful to examine the structure
of this truncated dynamical matrix itself (in the following called simply the ‘dynamical
matrix’). The discussion becomes particularly transparent for the case of dispersion along
the principal symmetry directionsa∗ andc∗, provided that the dynamical matrix is given in
a convenient symmetry basis.

3.1. The bare modes and the dynamical matrix

For the analysis of phonons propagating alongc∗, such a basis may be formed by the
following combinations, symmetric and antisymmetric with respect to theσz(

1
2 0 0) glide:

φn = ξn + ηn√
2

ψn = ξn − ηn√
2

un = xn + yn√
2

vn = xn − yn√
2

. (3.1)

The symmetric variablesφn andun have thus the same symmetry properties as the ‘layer’
variableswn used in the articles of Chen and Walker [8] (and similarly the antisymmetric
variablesψn andvn transform as thevn variables used therein). The spatial complex Fourier
transforms (with halved translational period1

2c) of these variables

φ(q) =
∑

n

φn e(iπqn) ψ(q) =
∑

n

ψn e(iπqn)

u(q) =
∑

n

un e(iπqn) v(q) =
∑

n

vn e(iπqn)
(3.2)

may be interpreted as collective displacement coordinates with respect to the orthonormal
basis of bare modes:

{|φ(q)〉, |ψ(q)〉, |u(q)〉, |v(q)〉} (3.3)
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so that

φ(q) ≡ 〈φ(q)| any general displacement state〉, . . . ‖φ(q)‖2 = 〈φ(q)|φ(q)〉
=

∑
n

1 ≡ Nn, . . . .

One may refer to these modes as to the bare or pure modes as they correspond to the
displacements involving either only ‘easy rotations’ (|φ(q)〉 and |ψ(q)〉) or only overall
column translationsTy (|u(q)〉 and |v(q)〉).

They might be considered also as symmetry-adapted modes as they have all the
transformation properties of the true ‘eigenvector’ phonon modes. Namely, all the four bare
branches belong to the33 representation forq ∈ 〈0, 1

2〉 and they transform as32 modes
with wavevectors 1− q for q ∈ 〈 1

2, 1〉. (The true crystallographic unit-cell parameter
c ≈ 10.8 Å is used here to define the reduced phonon wavevectorq = q · c/2π .) The
symmetry of the bare0-point modes are as follows:

(i) |φ(0)〉 and |u(0)〉 belong to the B2u representation;
(ii) |ψ(0)〉 and |v(0)〉 belong to the B3g representation;
(iii) |φ(1)〉 and |u(1)〉 belong to the B1g representation;
(iv) |ψ(1)〉 and |v(1)〉 belong to the Au representation.

The corresponding dynamical matrix is obtained directly from the potential (2.1):

(D)X,Y ≡ 〈X|D|Y 〉
Nn

=
∑

n

1

Nh,k

∂2F

∂X0 ∂Yn

e−iπqn Xn, Yn = φn, ψn, un, vn (3.4)

which leads to

Dc(q) =


Dvv 0 Dvφ Dvψ

0 Duu Duφ Duψ
D∗

vφ Duφ Dφφ Dφψ
Dvψ D∗

uψ D∗
φψ Dψψ

 (3.5)

where

Dvv = Aa + Ac sin2
(πq

2

)
Duu = Ac sin2

(πq

2

)
Dφφ = bB2u

+ (bB1g
− bB2u

) sin2
(πq

2

)
Dψψ = bAu

+ (bB3g
− bAu

) cos2
(πq

2

)
Dvφ = idc sin(πq)

Dvψ = dB3g
+ dB1g

sin2
(πq

2

)
Duφ = dB1g

sin2
(πq

2

)
Duψ = idc sin(πq)

Dφψ = id12 sin(πq)

(3.6)
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with ten real parameters (nine of them being independent):

Ac = −4tc

Aa = −4ta

bB2u
= r0 + r1 + 2rc + 2ra

bAu
= r0 + r1 − 2rc − 2ra

bB1g
= r0 − r1 − 2rc + 2ra

bB3g
= r0 − r1 + 2rc − 2ra

d12 = −r1 = −(bB2u
+ bAu

− bB1g
− bB3g

)/4

dB1g
= −2s ′

c − 2s ′′
c

dB3g
= −2s ′

a − 2s ′′
a

dc = s ′
c − s ′′

c .

(3.7)

The diagonal elements of (3.5) correspond to the dispersion of the bare branches
(consecutively|v(q)〉, |u(q)〉, |φ(q)〉 and|ψ(q)〉); the non-diagonal elements are responsible
for the eigenvector mixing. The parametersbB2u

, bAu
, bB1g

and bB3g
are the squared

frequencies of the bare ‘rotational’ modes of B2u, Au, B1g and B3g symmetry; similarly
Ac and Aa correspond to the bare translational modes B1g and B3g. Note that there is no
direct coupling between the two bare translational branches, because the direct interaction
between translations of the two nearest-neighbour columns related by the C2b interaction
was neglected, whereas the bare rotational branches are directly mixed by thed12 sin(πq)

term.
One can proceed in a similar manner for the dispersion along the6 line (q ‖ a∗). Let

us introduce the extended bare64–62 branches in the following way:

φ̃(q) =
∑
m

φ̃m e(iπqm) ψ̃(q) =
∑
m

ψ̃m e(iπqm)

ũ(q) =
∑
m

ũm e(iπqm) ṽ(q) =
∑
m

ṽm e(iπqm)
(3.8)

where the symmetric and antisymmetric combinations of the variables defined previously
were introduced in the form

φ̃n = ξ̃n + η̃n√
2

ψ̃n = ξ̃n − η̃n√
2

ũn = x̃n + ỹn√
2

ṽn = x̃n − ỹn√
2

(3.9)

so that

(i) |φ̃(0)〉 = |φ(0)〉 and |ũ(0)〉 = |u(0)〉 belong to the B2u representation,
(ii) |φ̃(1)〉 = |ψ(0)〉 and |ũ(1)〉 = |v(0)〉 belong to the B3g representation,
(iii) |ψ̃(0)〉 = |φ(1)〉 and |ṽ(0)〉 = |u(1〉 belong to the B1g representation and
(iv) |ψ̃(1)〉 = |ψ(1)〉 and |ṽ(1)〉 = |v(1)〉 belong to the Au representation.
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The resulting dynamical matrix (forq ‖ a∗) is then the same as (3.5), but with elements

Dṽṽ = Ac + Aa sin2
(πq

2

)
Dũũ = Aa sin2

(πq

2

)
Dφ̃φ̃ = bB2u

+ (bB3g
− bB2u

) sin2
(πq

2

)
Dψ̃ψ̃ = bAu

+ (bB1g
− bAu

) cos2
(πq

2

)
Dṽφ̃ = ida sin(πq)

Dṽψ̃ = dB1g
+ dB3g

sin2
(πq

2

)
Dũφ̃ = dB3g

sin2
(πq

2

)
Dũψ̃ = ida sin(πq)

Dφ̃ψ̃ = id12 sin(πq).

(3.10)

The diagonal elements corespond, in that order, to theṽ(q), ũ(q), φ̃(q) and ψ̃(q) bare
branches. Here the parameterda is given by

da = s ′′
a − s ′

a (3.11)

and the remaining parameters are defined as in (3.7).

3.2. The phonon eigenmodes

For a general value ofq ‖ c∗ all the phonon eigenmodes (corresponding to the eigenvectors
of the dynamical matrix) are of mixed character. However, in theq → 0 limit, most of
the mixing terms disappear and only thedB3g

term which couples the two bare B3g modes
|ψ(0)〉 and |v(0)〉 will remain. Similarly, forq = 1, only the mixing between the two B1g

modes (|φ(1)〉 and |u(1)〉 coupled bydB1g
) and between the two Au modes (|ψ(1)〉 and

|v(1)〉 coupled bydAu
= dB1g

+ dB3g
) remain. Consequently, the0-point eigenmodes fulfil

the following conditions:

ωB2u
= ω2

B2u(L) = bB2u
(3.12)

and

ω2
B1g(L) + ω2

B1g(T ) = Ac + bB1g

ω2
B1g(L)ω

2
B1g(T ) = AcbB1g

− d2
B1g

ω2
B3g(L) + ω2

B3g(T ) = Aa + bB3g

ω2
B3g(L)ω

2
B3g(T ) = AabB3g

− d2
B3g

ω2
Au(L) + ω2

Au(T ) = Aa + bAu
+ Ac

ω2
Au(L)ω

2
Au(T ) = (Aa + Ac)bAu

− d2
Au

(3.13)

where the additional indexT (or L) distinguishes the eigenmodes which become bare
translational (or librational) modes when the non-diagonal terms are continuously switched
off. If these mixing termsdB1g

, dB3g
anddAu

are small enough with respect to the difference
of the squared frequencies of the corresponding bare modes, the eigenvectors of the resulting
modes keep approximately their original character. We suppose that this is indeed the
case, because the similar characteristics of the lowest B1g, B3g and Au optic phonons
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(established experimentally; see part I) suggest that their eigenvectors correspond to the
‘critical’ librational degrees of freedom.

Once these lowest-frequency modes are identified with the B1g(L), B3g(L) and Au(L)

eigenmodes, the optic phonons with dominant translational eigenvectors B1g(T ), B3g(T )

and Au(T ) must have higher frequencies. Under these conditions more explicit estimates
for the 0-point eigenvalues of the dynamical matrix can be derived as

ω2
B1g(L) = bB1g

−
d2

B1g

Ac − bB1g

+ (Ac − bB1g
)O

[(
dB1g

(Ac − bB1g

)4]

ω2
B1g(T ) = Ac +

d2
B1g

Ac − bB1g

+ (Ac − bB1g
)O

[(
dB1g

(Ac − bB1g

)4]

ω2
B3g(L) = bB3g

−
d2

B3g

Aa − bB3g

+ (Aa − bB3g
)O

[(
dB3g

(Aa − bB3g

)4]

ω2
B3g(T ) = Aa +

d2
B3g

Aa − bB3g

+ (Aa − bB3g
)O

[(
dB3g

(Aa − bB3g

)4]

ω2
Au(L) = c − d2

Au

Aa − bAu
+ Ac

+ (Aa − bAu
+ Ac)O

[(
dAu

(Aa − bAu
+ Ac

)4]

ω2
Au(T ) = Aa + Ac + d2

Au

Aa − bAu
+ Ac

+ (Aa − bAu
+ Ac)O

[(
dAu

(Aa − bAu
+ Ac

)4]

(3.14)

where the three mixing elements are related by

dAu
= dB1g

+ dB3g
.

For the phonon modes with wavevectors in the vicinity of the0 point, the dispersion
of the eigenmodes can be obtained by a standard perturbation expansion with respect to the
small parameterq (or 1− q). Here only the correction to the acoustic velocity due to the
coupling of the acoustic branch with the optic branches is of practical interest. Forq ‖ c∗,
we obtain

ω2
T A(q) = [Ac − 4d2

c Aa(ω
2
B3g(L)ω

2
B3g(T ))

−1]
(πq

2

)2
+ O(q3) (3.15)

and, forq ‖ a∗;

ω2
T A(q) = [Aa − 4d2

aAc(ω
2
B1g(L)ω

2
B1g(T ))

−1]
(πq

2

)2
+ O(q3). (3.16)

The elastic constants may thus be expressed as:

C44 = ρ[Ac − 4d2
c Aa(ω

2
B3g(L)ω

2
B3g(T ))

−1]
(π

2

)2
(3.17)

and

C66 = ρ[Aa − 4d2
aAc(ω

2
B1g(L)ω

2
B1g(T ))

−1]
(π

2

)2
(3.18)

whereρ is the mass density of the crystal.
These expressions allow us to estimate the frequencies of the translational optic modes

ωB3g(T ), ωB1g(T ) andωAu(T ) using the values of the elastic constants only:

ω2
B1g(T )

(3.14)
> Ac

(3.17)
> C44/ρ ω2

B3g(T )

(3.14)
> Ac

(3.18)
> C66/ρ. (3.19)
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In other words, the second mixed mode of mainly translational character has a higher
frequencyω2

B1g(T ) than the pureTy mode (Ac) which is higher than the frequency extrapolated
from the acoustic velocity.

In BCCD these relations provide the following inequalities:

ν2
B1g(T )

(3.19)
> 1.18 THz ν2

B3g(T )

(3.19)
> 0.89 THz (3.20)

which allow us to identify the second-lowest-frequency phonons of the B1g and B3g

representation (around 1.3 THz) as B1g(T ) and B3g(T ) (the next B1g and B3g modes
are around 1.85 and 2.1 THz, respectively). Obviously, the smaller the coupling between
translations and easy rotations, the closer the frequencies and corresponding estimates should
be. If at least thed2

B1g
/(Ac − bB1g

), d2
B3g

/(Aa − bB3g
) andd2

Au
/(Aa − bAu

+ Ac) are small,
the frequencies of theωB3g(T ), ωB1g(T ) and ωAu(T ) modes are approximately given by the
corresponding bare modes and from (3.19) it further follows that

ν2
Au(T )

.= ν2
B1g(T ) + ν2

B3g(T ) (3.21)

which provides the rough estimate

νAu(T ) ≈ 1.85 THz.

We have indeed observed two modes with frequencies close to this value (at 1.6
and 1.85 THz) that may correspond to the Au representation (see part I). It seems
probable that only the mode at 1.85 THz is the Au mode, which would support its
interpretation as Au(T ). However, in order not to include unnecessary uncertainties in
the model, for the time being we shall leave the question of the assignment of this mode
open.

The analysis of the dispersion inside the Brillouin zone is more complex, as all the
mixing terms have to be considered simultaneously. This is particularly important in the
region where the two bare optic branches cross the bare acoustic branchu(q). Moreover,
the resulting dispersions depend not only on the moduli of the mixing terms but also on
their signs (unlike in the case of coupling between only two modes, as for example in
(3.13)).

4. Comparison with the experimental dispersion

The qualitative considerations in the preceding sections lead us to propose a parametrization
of the dynamical matrix in terms of ten independent parameters:Ac, Aa, bB1g

, bB3g
, bB2u

,
bAu

, dB1g
, dB3g

, dc andda. If this approach is essentially correct, each of these parameters
should have a well defined physical interpretation. In particular, knowledge of their values
enables one

(i) to trace the dispersion of the bare modes, the mixing terms and the eigenmodes along
any general direction in thea∗–c∗ plane,

(ii) to express the eigenvectors of the eigenmodes as linear combinations of bare mode
‘eigenvectors’ and

(iii) to estimate the values of the ten mass-reduced intercolumn force constantstc, ta,
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r0, r1, ra, rc, s ′
c, s ′

a, s ′′
c ands ′′

a , as (3.7) and (3.11) allow direct inversion:

tc = − 1
4Ac

ta = − 1
4Aa

rc = 1
8(bB2u

− bAu
− bB1g

+ bB3g
)

ra = 1
8(bB2u

− bAu
+ bB1g

− bB3g
)

r1 = 1
4(bB2u

+ bAu
− bB1g

− bB3g
) = −d12

r0 = 1
4(bB2u

+ bAu
+ bB1g

+ bB3g
)

s ′
c = − 1

4(dB1g
− 2dc)

s ′
a = − 1

4(dB3g
+ 2da)

s ′′
c = − 1

4(dB1g
+ 2dc)

s ′′
a = − 1

4(dB3g
− 2da).

(4.1)

In this section the determination of these parameters from the comparison with the
experimental data is discussed.

As the potential introduced in section 2.3 was written directly in terms of mass-
reduced variables, the above parameters correspond to mass-reduced force constants. In
order to facilitate the comparison with the inelastic neutron scattering data presented in
part I, we shall suppose that all introduced parameters are expressed in units of 4π2 THz2

(1024 rad2 s−2).

4.1. Fitting procedure

The inverse lattice dynamics problem (setting up the free parameters in the dynamical matrix
using the known dispersion curves) is not a straightforward procedure, because for example
the different sets of free parameters in the dynamical matrix may provide the same or similar
dispersion curves. Therefore, any simple approach such as the least-squares fit of the data
with the eigenvalues of the parametrized dynamical matrix using arbitrarily chosen starting
parameters is clearly insufficient, and a more systematic analysis is required.

Here we take advantage of the following four facts.

(i) Equations (3.12), (3.13), (3.17) and (3.18), the experimental zone centre frequency
values of the modes B2u(L), B1g(L), B3g(L), Au(L), B1g(T ), B3g(T ) and the elastic
constantsC44 and C66 provide altogether eight independent constraints on the values of
the ten model parameters. These constraints are unfortunately non-linear but, if the values
of Aa andAc and the signs ofdB1g

, dB3g
, da anddc are known, the eight remaining parameters

bB1g
, bB3g

, bB2u
, bAu

, dB1g
, dB3g

, da anddc can be evaluated explicitly from these conditions.
(ii) The upper and lower limits forAa and Ac (describing the dispersion of the bare

acoustic modes withq ‖ c∗ andq ‖ a∗) can be easily extracted from (3.14)–(3.16):

Ac ∈
〈
C44

ρ

4

π2
, ω2

B1g

〉
≈ 〈1.5, 1.9〉 (4.2)

Aa ∈
〈
C66

ρ

4

π2
, ω2

B3g

〉
≈ 〈0.8, 1.6〉. (4.3)

(iii) The dispersion alongc∗ does not depend on the value and sign ofda.
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(iv) The eigenvalues of the matrixDc(q) do not change if the signs of the parameters
dB1g

, dB3g
anddc are changed simultaneously; this follows from the fact thatdB1g

, dB3g
anddc

appear as pair products in the characteristic polynomial ofDc(q) (p(λ) = det|Dc(q)−λI|).
The fitting procedure itself was as follows.

(1) The signs ofdB1g
, dB3g

anddc were chosen.
(2) A trial value ofAc was chosen within the allowed interval (4.2).
(3) Using (3.12), (3.13), (3.17) and (3.18), the values of the remaining parameters

and the smallest eigenvalue of the matrixDc(
1
3) were calculated as a functionAa, for

Aa ∈ 〈0.8, 1.6〉 (see (4.3)).
(4) For those values ofAa for which the calculated lowest eigenvalue atq = 1

3
corresponded to the square of the experimental soft-mode frequency, all dispersion curves
alongc∗ were calculated and compared with the experimental data.

(5) In the case of reasonable agreement with the dispersion curves alongc∗, the
dispersion curves alonga∗ were calculated as well (once withda negative and once with
da positive).

(6) Points (2)–(5) were repeated for different values of the parameterAc in the allowed
interval (4.2).

(7) Points (1)–(6) were repeated for all four non-equivalent sign choices fordB1g
, dB3g

anddc ((+ + +), (+ + −), (+ − −) and(+ − +)).

4.2. Results

The above-described procedure was applied first to the data collected at 205 K, which are
quite complete and which already reveal the well developed minimum on the lowest phonon
branch. Two different sets of parameters providing very satisfactory fits for the dispersion
along c∗ were found. The first variant corresponds to the(+ + ++) choice (dB1g

> 0,
dB3g

> 0, dc > 0, da > 0); the second variant corresponds to the(− + ++) choice (see
figures 4 and 5 and tables 2 and 3).

In both cases a minimum on the soft branch appears owing to the simultaneous mixing
between the acoustic branch and both ‘rotational’ optic branches. This can be easily verified
by changing the sign of one of the three mixing terms involved. If there were only pair
mixing, this change would have no effect on the dispersion, because pair mixing gives rise
to a mode repulsion which depends on the modulus of the mixing term. On the contrary
we observe quite drastic changes, leading to the disappearance of the minimum on the
33 branch and the appearance of a minimum or even an instability on the64 branch
(figure 6).

The simultaneous mixing of all three branches allows also a better understanding of the
difference between dispersions forq ‖ c∗ andq ‖ a∗. If the mixing of branches involved
at eachq only two branches at maximum, rather similar dispersions for both directions are
predicted by the model. Indeed, in both cases the dispersion of the bare optic branches and
of the bare acoustic branch are quite similar and the terms responsible for the mixing of
easy rotations with the translations are of the same order, too.

The latter follows directly from the assumption of pair mixing, as the experimentally
established anticrossing gaps in the regions where the bare branches cross are of same order
of magnitude in both directions.

On the contrary, if the mixing is extended to all three branches, the repulsion of the
lowest branch by the other two may be either additive or may partially cancel, according
to the relative signs of the mixing terms, which may be different for the two directions.
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Table 2. Values of the parameters that appear in the dynamical matrices (3.5) and (3.10), as deduced from the experimental mode frequencies.

Ac Aa bB2u
bB1g

bB3g
bAu dB1g

dB3g
dc da

(4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2)

205 K first variant 1.89 1.5 0.13 0.497 0.54 0.228 0.240 0.423 0.238 0.306
205 K second variant 1.90 1.66 0.13 0.487 0.385 0.100 −0.208 0.080 0.229 0.333
300 K first variant 1.75 1.35 0.26 0.630 0.660 0.368 0.330 0.435 0.247 0.303

Table 3. Values of the quasi-harmonic intercolumn force constants, as obtained from the parameter values in table 2.

tc ta r0 r1 ra rc s′′
c s′

c s′
a s′′

a

(4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2) (4π2 THz2)

205 K first variant −0.473 −0.375 0.349 −0.170 −0.018 −0.007 −0.179 0.059 −0.259 0.047
205 K second variant−0.475 −0.414 0.275 −0.161 0.017 −0.009 −0.062 0.166 −0.186 0.146
300 K first variant −0.438 −0.338 0.475 −0.171 −0.015 −0.007 −0.206 0.041 −0.260 0.043
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(a) (b)

Figure 4. Dispersion curves along thea∗ and c∗ directions at 205 K. The neutron data (see
part I) are shown as open symbols. Solid curves represent dispersion curves of eigenmodes,
and broken curves those of bare modes, calculated from the dynamical matrixesDc(q) and
Da(q) for parameter values determined by the method described in the text (first variant, with
dB1g

> 0, dB3g
> 0, dc > 0, da > 0). (a) Dispersion forq ‖ c∗. The broken curve (— — —)

represent the dispersion of the diagonal elements of the matrixDc(q), defined in section 3.7,
while broken curves (– – –) represent the dispersion of the alternative ‘flat’ bare optic branches
Dφ′φ′ andDψ′ψ′ (4.10), introduced in section 4.4. (b) Dispersion forq ‖ a∗. (c) Dispersion for
q ‖ a∗, with the same set of parameters except ford12, which was set to zero.

On the other hand, the difference between the two variants proposed does not allow
one to be favoured over the other, because in both cases the observed discrepancies may
possibly be accounted for by neglected interactions. In particular, small discrepancies
should arise owing to the neglected dipole–dipole coupling between easy rotations of
the more distant columns. For example, if the interaction between the next-neighbour
columns related by C2y are taken into account , the coupling constantd12 becomes an
independent parameter, which may take on different values for theDc(q) and Da(q)

dynamical matrices. We have found that settingd12 = 0 in the Da(q) matrix improves
considerably the agreement with the experimental data (forq ‖ a∗, see figures 4 and
5), which is consistent with such a hypothesis. Therefore, the values of the parameters
cannot be determined in a unique way by comparison with the experimental dispersions
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(c)

Figure 4. (Continued)

only.
The same procedure was applied also to the room-temperature data, with similar results

(figure 7). The differences between parameter values atT = 300 and 200 K should
in principle indicate which interactions have large anharmonic contributions. However,
this method appears to be unreliable owing to the accumulation of experimental errors
and uncertainties inherent in the fitting procedure. Instead, we limit our analysis to the
temperature derivatives of the parameters, which may be estimated by a more direct and
more reliable method discussed in the next section.

In the semimicroscopic approach, the effect of the anharmonicity is hidden in the
temperature dependence of the quasi-harmonic force constants. The purpose of this section
is to determine firstly which of the force constants has a temperature dependence that
is essential for the observed soft-mode behaviour and secondly what kind of anharmonic
interaction term is responsible for this renormalization.

4.3. The essential soft quasi-harmonic parameter

In order to find the quasi-harmonic force constant parameter which provides the main
contribution to the observed decrease in the soft-mode frequency, let us consider the possible
role of each of the coupling parameters one by one.
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(a) (b)

Figure 5. Dispersion curves along thea∗ and c∗ directions at 205 K for the second variant.
The meaning of the symbols is same as in the preceding figure 4. The solid and broken curves
are calculated from the parameter values determined by the method described in the text (second
variant, withdB1g

< 0, dB3g
> 0, dc > 0, da > 0). (a) Dispersion forq ‖ c∗. (b) Dispersion for

q ‖ a∗. (c) Dispersion forq ‖ a∗, with the same set of parameters except ford12, which was
set to zero.

First of all, we may exclude the parametersta and tc, as the bare acoustic modes show
rather ordinary hardening with decreasing temperature. This is apparent both for the B1g(T )

and the B3g(T ) optic modes (which correspond roughly to theq = 1 end of the extended
bare acoustic branchesu(q) andu(q̃)) and also for the temperature dependence of the elastic
constantsC44 andC66 reported in [24].

The renormalization of the coupling constantss ′
a, s ′

c, s ′′
a and s ′′

c , describing the
translation–rotation coupling, may in principle contribute to the soft-mode renormalization
as was recently proposed in the case of K2SeO4 [25]. However, the temperature derivative
of the ω2

B2u(L) frequency, which does not depend on the parameterssi and ti at all, is
even higher than that of the soft mode itself. As it seems plausible that the temperature
renormalization of the soft mode has the same origin as the renormalization of the lowest-
energy zone centre modes B1g(L), B3g(L), B2u(L) and Au(L), the anharmonicity of the
translation–rotation coupling is not a primary contribution.

Hence, the critical coupling constant is to be found among the force constantsr0, r1,
ra and rc. For this purpose it is useful to examine expressions for the squared frequencies
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(c)

Figure 5. (Continued)

of the four 0-point bare optic modes corresponding to the easy rotations in terms of the
intercolumn force constants (see (3.7)):

bB2u
= r0 + r1 + 2rc + 2ra(for the bare B2u)

bAu
= r0 + r1 − 2rc − 2ra (for the bare Au)

bB1g
= r0 − r1 − 2rc + 2ra(for the bare B1g)

bB3g
= r0 − r1 + 2rc − 2ra(for the bare B3g).

(4.4)

The only force constant that contributes to all these modes with the same sign isr0; all
others would soften some modes but simultaneously harden others. We may thus conclude
that the parameter which contributes most to the softening of the two bare optic branches
and indirectly to the soft-mode renormalization should ber0.

As already mentioned, ther0 ‘self’-coupling constant contains the contributions from
both the intercolumn and the intracolumn interatomic force constants. Therefore, if the
former were responsible for the temperature dependence ofr0, this temperature dependence
should be observed simultanously for some other, purely intercolumn force constant
parameterri, i 6= 0. Such a hypothesis can be rejected on the basis of the following
qualitative analysis. First, we have the exact relation (3.12):

∂

∂T
ω2

B2u(L) = ∂

∂T
bB2u

.
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(a) (b)

Figure 6. The effect of the signs of the mixing terms. The neutron data (see part I) are shown
as open symbols. The solid curves represent dispersion curves of eigenmodes, and the broken
curves those of bare modes, calculated from the dynamical matricesDc(q) andDa(q) from the
parameter values determined by the method described in the text (second variant). (a) Dispersion
curves forq ‖ c∗ for the same set of parameter values as in figure 5, but withdc < 0. (b)
Dispersion curves forq ‖ a∗ for the same set of parameter values as in figure 5, but withda > 0.

If the temperature dependences of the parametersdB1g
, dB3g

and dAu
are neglected, it

follows from (3.14) that the temperature derivatives of the squared frequencies of the B1g(L),
B3g(L) and Au(L) eigenmodes may be approximated by the temperature derivatives of the
squared frequencies of the bare ‘rotational’ modes:

∂

∂T
ω2

B1g(L)

.= ∂

∂T
bB1g

∂

∂T
ω2

B3g(L)

.= ∂

∂T
bB3g

∂

∂T
ω2

Au(L)

.= ∂

∂T
bAu

. (4.5)

Then the temperature derivatives of the purely ‘easy rotational’ parameters ‘ri ’ can be
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(a) (b)

Figure 7. Dispersion curves along thea∗ andc∗ directions at 300 K. The neutron data (those of
part I) are shown as by open circles. The solid curves represent dispersion curves of eigenmodes
and the broken curves those of bare modes, calculated from the dynamical matricesDc(q)

and Da(q) for parameter values determined by the method described in the text (first variant,
with dB1g

> 0,dB3g
> 0, dc > 0, da > 0). (a) Dispersion forq ‖ c∗. The broken curves

(— — —) represent the dispersion of the diagonal elements of the matrixDc(q), defined in
section 3.7, while the broken curves (– – –) represent the dispersion of the alternative ‘flat’ bare
optic branchesDφ′φ′ and Dψ′ψ′ (4.10), introduced in section 4.4. (b) Dispersion forq ‖ a∗.
(c) Dispersion forq ‖ a∗, with the same set of parameters except ford12, which was set to
zero.

determined explicitly from

∂

∂T
rc

.= 1

8

(
∂

∂T
ω2

B2u(L) − ∂

∂T
ω2

Au(L) − ∂

∂T
ω2

B1g(L) + ∂

∂T
ω2

B3g(L)

)
∂

∂T
ra

.= 1

8

(
∂

∂T
ω2

B2u(L) − ∂

∂T
ω2

Au(L) + ∂

∂T
ω2

B1g(L) − ∂

∂T
ω2

B3g(L)

)
∂

∂T
r1

.= 1

4

(
∂

∂T
ω2

B2u(L) + ∂

∂T
ω2

Au(L) − ∂

∂T
ω2

B1g(L) − ∂

∂T
ω2

B3g(L)

)
∂

∂T
r0

.= 1

4

(
∂

∂T
ω2

B2u(L) + ∂

∂T
ω2

Au(L) + ∂

∂T
ω2

B1g(L) + ∂

∂T
ω2

B3g(L)

)
.

(4.6)

Taking the experimental values of the temperature derivatives of the squared
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(c)

Figure 7. (Continued)

frequencies of B2u(L), B1g(L), B3g(L) and Au(L) as obtained from inelastic neutron
scattering (for B2u(L) and Au(L)) and from Raman scattering (for B1g(L) and
B3g(L)) we have found that all three intercolumn coupling constants show rather weak
temperature dependences, roughly six or seven times weaker than forr0 one (see
table 4).

Table 4. Temperature derivatives of the squared frequencies of the optic modes and of the force
constantsr0, r1, ra , rc, ta and tc. The r0 ‘self’-coupling constant shows a larger temperature
dependence than all other coupling constants do.

(∂/∂T )ω2 (∂/∂T )ri
(4π210−5 THz2 K−1) (4π210−5 THz2 K−1)

B2u(L) 152 r0 90
Au(L) 56 r1 14
B1g(L) 72 ra 11
B3g(L) 80 rc 13
B1g(T ) −36 ta −9
B3g(T ) −100 tc −25

We may thus conclude the following.
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(i) the principal unstable degree of freedom in BCCD corresponds to the ‘easy’
rotations of betaine molecules and Ca complexes CaCl2 · 2H2O, correlated along theb
direction.

(ii) The anharmonic potential renormalizing the quasi-harmonic frequency associated
with this degree of freedom arises essentially from intracolumn interactions.

4.4. The relevant anharmonic terms

The next important element necessary for the description of the mechanism of the soft-mode
phase transition is the nature of the anharmonic terms responsible for the soft-mode tem-
perature dependence. For a weakly anharmonic crystal, there are three contributions to the
quasi-harmonic phonon frequencies in the lowest order in perturbation: the renormalization
due to the quartic and cubic terms, and the contribution from linear coupling to the thermal
strains [26]. In this section the role of these mechanisms in BCCD is briefly discussed.

The importance of the coupling to strains in BCCD was demonstrated experimentally
by the pronounced effect of external pressure on the phase diagram of this compound
[27]. Nevertheless, it appears that the role of thermal strain on the normal-incommensurate
transition is only a secondary effect. Let us consider the strain dependence of the soft-mode
quasi-harmonic frequencyωsof t mode explicitly:

ω2
sof t mode = function[T , εi(T )]. (4.7)

Then the temperature derivative can be written as

d

dT
(ω2

sof t mode)
.= AT + Aε

with

AT =
(

∂

∂T
(ω2

sof t mode)

)
ε

Aε =
3∑

i=1

αi

(
∂

∂εi

(ω2
sof t mode)

)
T

(4.8)

where AT stands essentially for the contribution of the quartic anharmonic terms (cubic
terms formed only from the variablesξn, ηn+1, xn, . . ., being antisymmetric with respect to
theσy mirror plane, are not allowed by symmetry) andAε is the contribution depending on
the longitudinal thermal strain coefficients

αi = ∂εi

∂T

(the shear strains are zero owing to the orthorhombic symmetry).
The strain dependence of the quasi-harmonic frequency of the soft mode may be

related to the strain dependence of the transition temperatureTi [28]. Rewriting 4.7 as
ω2

sof t mode = A(T − Ti(εi)) we obtain the expression for the thermal strain contribution to
the total soft-mode renormalization as

Aε

Aε + AT

.=
[

1 + 1

/ 3∑
i=1

(
αi

∂Ti

∂y(−εi)

) ]−1

. (4.9)

By considering the values of∂Ti/∂(−εi) (1289, 1090 and 840 K) obtained from uniaxial
external pressure experiments [29] and values ofαi (64.7, 60.9 and−13.3 × 10−6 K−1)
obtained from thermal dilatation measurements [24] we find that this thermal strain
contribution represents only about 12% in the total soft-mode temperature dependence.
Estimates for∂Ti/∂(−εi) compatible with those provided in the work of Kirchneret al [29]
may be obtained also from the value of1Cp

.= 0.066 J cm3 K−1 known from calorimetric
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measurements [30], using the known values of the jumps of1αi [24], in a way similar to
that used in [31] for K2SeO4.

Then it may be concluded that the soft-mode temperature renormalization arises
primarily because of the quartic anharmonic terms, either owing to the simplest on-site terms

ξ4
n + η4

n

which would renormalize only the parameterr0, or perhaps owing to some more complicated
terms such as

ξ2
nη2

n

ξnηn(ξ
2
n + η2

n)

or

ξ2
n ξ2

n+1 + η2
nη

2
n+1

ξnξn+1(ξ
2
n + ξ2

n+1) + ηnηn+1(η
2
n + η2

n+1)

that may simultaneously renormalize alsora or rc, respectively.
The remaining discrepancies may arise either because of the limited number of degrees

of freedom (only two degrees of freedom per 28-atom formula unit), or because of the
limitation to nearest-neighbour interactions only. In particular the neglected dipole–dipole
coupling between easy rotations on more distant columns might improve the model†. The
dispersion of the fourth lowest branch in theq ‖ a∗ data clearly does not fit well with
the model proposed, while the frequency of the mode at 1.8 THz corresponds well to
the calculated Au mode even though this frequency was not taken into account when the
coupling parameters were determined‡. We thus propose that the dispersion of the fourth
branch in theq ‖ a∗ direction is not affected by the mixing with some other degree of
freedom not taken into account in the model.

One of the most important microscopic assumptions of the present model is that there
are exact correlations between the introduced ‘easy’ displacements performed by the entities
belonging to the same ‘column’. For the case of rotational degrees of freedom this
assumption is well corroborated by the experimental fact that the dispersion of the related
optic branch is relatively small in thea∗ andc∗ directions compared with theb∗ direction.

Note that someother degrees of freedom may be preferentially correlated for example
within the zigzag chains parallel to the directiona or inside the ‘layers’ around theσc

symmetry elements, but our experimental results showed that this is not the case for those
two degrees of freedom involved in the lowest-frequency modes investigated here.

From the phenomenological point of view the model can be viewed as a mode-mixing
scheme. As in the case of quartz or K2SeO4, the appearance of the minimum on the
lowest branch at a general value of the phonon wavevector is clearly linked to the coupling
between the acoustic and the unstable optic branch. In the present model (as in the recent
work of Kappler and Walker [22]), coupling to other branches is introduced, too. These

† We have checked that the introduction of the next-neighbour interaction improves the agreeement with the
experimental dispersions alonga∗. It also shifts the position of the minimum on the soft branch closer to
qs = c∗/3. The same effect was obtained also via the introduction of the approximate correction proposed by
Smirnov [32].
‡ The agreement for the latter mode can be understood as a consequence of the relation (3.21). By inspection of
the dynamical matrix it can be shown that this relation is directly linked with the fact that there is no coupling or
only a small coupling between the translations of formula units belonging to columns related by the C2b operation.
The most probable microscopic explanation of this fact is that the coupling between the translational degrees of
freedom is given primarily by the hydrogen bonds, which link only the nearest-neighbour columns related byσa

andσc.
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supplementary branches appear here naturally owing to the formulation of the model in
terms of column variables, as a consequence of the assumption that there are four formula
units per unit cell, each described by an independent variable. We have found that in fact
the most convenient description of the lowest branchdemandsa scheme with simultaneous
mixing between at least two ‘rotational’ branches and one translational (acoustic) branch.

Let us illustrate this statement in a different way. It might seem from section 3 (or
from the formal construction of layer modes provided in [8, 22]) that the symmetry-adapted
extended bare branches of33–32 symmetry in the Pnma structure have to connect the B2u

mode with the B1g mode, and the B3g mode with the Au mode. In fact this is not necessarily
so; the alternative definition of the symmetry-adapted extended bare33–32 branches (that
connect B2u with Au, and B3g with B1g) is equally possible. Indeed, if we define

η′
n = ηn−1

the complex Fourier transform of the variables

φ′
n = ξn + η′

n√
2

= ξn + ηn−1√
2

ψ′
n = ξn − η′

n√
2

= ξn − ηn−1√
2

defined by analogy with (3.1), may be viewed as collective coordinates with respect to
symmetry-adapted bare modes{|φ′(q)〉, |ψ′(q)〉}, that fulfil the above-mentioned symmetry
conditions:

(i) |φ′(0)〉 belongs to the B2u representation;
(ii) |ψ′(0)〉 belongs to the B3g representation;
(iii) |φ′(1)〉 belongs to the Au representation;
(iv) |ψ′(1)〉 belongs to the B1g representation.

The dispersion of these bare modes is now given by the expressions

Dφ′φ′ = bB2u
+ (bAu

− bB2u
) sin2

(πq

2

)
Dψ′ψ′ = bB1g

+ (bB3g
− bB1g

) cos2
(πq

2

) (4.10)

and their direct interaction is given by

Dφ′ψ′ = −2 ira sin(πq).

The dispersions of such ‘flat’ bare branches are in fact closer to the resulting eigenmodes
(see figure 4) and their mutual coupling is also much smaller than in the case of the branches
{|φ(q)〉, |ψ(q)〉}. Therefore, in this sense, the mixing scheme with the alternative ‘flat’ bare
branches provides a more natural description than the previous description. The interaction
terms with the acoustic branch|u(q)〉 have now a slightly more complex form

Duφ′ = e(iπq/2) cos
(πq

2

) [
(−2dc + dB1g

) sin2
(πq

2

)]
Duψ′ = i e(iπq/2) sin

(πq

2

) [
−2dc cos2

(πq

2

)
− dB1g

sin2
(πq

2

)]
.

(4.11)

The problem of coupling between the acoustic and optic branches can now be re-examined.
The change in the sign ofDuφ′ does not alter substantially the dispersion in this case
(unlike in the previously discussed case where the sign ofDuφ was changed). Nevertheless,
it does not mean that the dispersion of the lowest branch can be well estimated when
the interactionDuψ′ of the second optic branch with the acoustic branch is neglected. It
appears that the simultaneous mixing of all three branches is again important here. It can
be understood if the small magnitude of the mixing termDuφ′ is considered; atq ≈ 0.15c∗
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we obtained|Duφ′ | ≈ 0.01(4π2 THz2) while the experimental value of the anticrossing gap
is δω2 ≈ ω2

2(0.15) − ω2
1(0.15) ≈ 0.1(4π2 THz2). (Let us recall thatδω2 = 2|Duφ′ | would

hold in the case of the simple pair mixing.)
On the other hand,|Duψ′ | is sufficiently large and it is clearly responsible for the second

anticrossing gap (atq ≈ 0.3c∗, between|ψ′(q)〉 and |u(q)〉). The pair mixing relation
δω2 = 2|Duψ′(0.3)| is well fulfilled in this case.

In other words, it seems that the necessity of including of the coupling with the second
optic branch in the model for BCCD is linked mainly with the fact that the coupling of
the acoustic branch with the lowest bare optic branch is quite small compared with the
coupling of the acoustic branch with the second bare optic branch. This result is given by
theq dependenceof the two coupling terms rather than by the specific values of the mixing
parameters, and it is therefore independent of the choice for the bare vectors (bothDuφ′ and
Duφ behave asq2 for small q vectors, whileDuφ′ andDuφ are proportional toq for small
q vectors).

Finally, if dB1g
anddB3g

are not too large, the pair mixing relationδω2 = 2|Duψ′(0.3)|
for the second anticrossing gap may in fact be taken as the ninth condition on the values
of the coupling parameters.

The value of this gap can be well estimated directly from the experimental data

δω2 ≈ ω2
3(0.3) − ω2

1(0.3) ≈ 0.22 (4π2 THz2)

while its value would, in the case of purely pair mixing, be given by

2|Duψ′(0.3)| ≈ 0.454|1.59dc + 0.206dB1g
| (4π2 THz2). (4.12)

This approximate condition enables one to explain why only the choices with opposite
signs fordB1g

anddc could provide satisfactory fits to the experimental dispersion curves;
the experimental value of this anticrossing gap is rather small so that, without compensation
of the two terms in (4.12), the agreement could not be achieved.

In conclusion, we may state that the mechanism for the appearance of the
incommensurate phase in BCCD is due to the competing interactions between different
degrees of freedom, in the sense of the original proposal of Axeet al [18] and the
related approaches developed subsequently for example in [33, 34] and that the above model
provides a quantitative description of these interactions in the present compound.

5. Conclusion

A simple microscopic lattice dynamical model for BCCD was constructed, starting from
the following assumptions.

(i) The lowest-frequency branches of33 and 32 symmetry involve only two distinct
degrees of freedom per formula unit.

(ii) Displacements related to these degrees of freedom are highly correlated along chains
of betaines and Ca complexes (CaCl2 · 2H2O) parallel to theb direction.

Even though we were not able to find a unique set of coupling constants from a
comparison with the experimental dispersion curves, several semi-quantitative conclusions
could be obtained about the mechanism of the normal–incommensurate transition.

First, the existence of a dispersion minimum on the33 branch and its non-existence on
the64 branch (leading to the appearance of the modulation along theq ‖ c∗ direction) were
ascribed to the difference in the signs of the translational–rotational intercolumn coupling
constants. This is possibly due to the simultaneous mixing between more than two branches.
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Secondly, it could be established that the most important temperature effect concerns the
intracolumn quasi-harmonic coupling constant describing the stiffness of the single column
itself with respect to the characteristic librational degree of freedom (‘easy rotation’).

Finally, it was verified that the temperature dependence of this coupling constant is not
related to the thermal strain. The most probable (i.e. lowest-order) anharmonic terms that
give rise to such renormalization are the quartic anharmonic on-site potentials for the easy
rotation column variables. This conclusion strongly supports the physical relevance of the
generalized DIFFOUR model for the description of the BCCD crystal. Furthermore, we
wish to emphasize that the coupling of the soft branch with another low-frequency branch
is crucial for the appearance of the incommensurate instability. We have argued that, as
long as the coupling among the critical librations of the four formula units is assumed to
be weak, the simultaneous softening of the two33 branches is expected. We believe that
a similar mechanism may account for the occurrence of the incommensurate instability in
other structurally related dielectric crystals.

With respect to the model proposed recently by Kappler and Walker, our ten-parameter
microscopic model is improved in several respects.

Our model is based on the assumption that both optic branches correspond to the same
degree of freedom of the formula unit, while in the models of Kappler and Walker no
relation between the two optic branches is assumed. The explicit microscopic interpretation
that was given to the variables and then to the coupling terms in the present model allows
a close comparison with neutron scattering results. The prediction of the present model
concerning the dynamics of the incommensurate phase will be presented in a forthcoming
publication and tested against Raman and neutron scattering data.
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